面临的挑战
- 网络延迟和丢包:网络拥塞、信号干扰等因素可能导致数据包丢失或延迟到达。
- 无序到达:UDP 是无连接协议,数据包可能因路由等原因无序到达。
- 高并发处理:大量并发连接时,操作系统资源(如文件描述符、内存等)管理困难,且可能出现处理性能瓶颈。
解决方案
- 网络延迟和丢包
- 重传机制:发送端记录已发送数据包,设置定时器,若超时未收到确认,重发数据包。
- 前向纠错(FEC):在发送数据中加入冗余信息,接收端利用冗余恢复丢失数据包。
- 无序到达
- 序列号:给每个数据包添加序列号,接收端按序列号排序重组数据。
- 高并发处理
- 高效的 I/O 模型:如使用 epoll(Linux 下)进行多路复用,提高 I/O 处理效率。
- 线程池或进程池:合理分配任务,避免频繁创建和销毁线程或进程带来的开销。
代码层面优化
- 重传机制实现
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#define PORT 8080
#define BUFFER_SIZE 1024
#define SERVER_IP "127.0.0.1"
#define TIMEOUT_SECONDS 2
int main() {
int sockfd;
struct sockaddr_in servaddr, cliaddr;
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0) {
perror("socket creation failed");
exit(EXIT_FAILURE);
}
memset(&servaddr, 0, sizeof(servaddr));
memset(&cliaddr, 0, sizeof(cliaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(PORT);
servaddr.sin_addr.s_addr = inet_addr(SERVER_IP);
char buffer[BUFFER_SIZE];
int n, len;
// 设置定时器
struct timeval timeout;
timeout.tv_sec = TIMEOUT_SECONDS;
timeout.tv_usec = 0;
setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, (const char*)&timeout, sizeof(timeout));
while (1) {
printf("Enter message to send: ");
fgets(buffer, BUFFER_SIZE, stdin);
buffer[strcspn(buffer, "\n")] = '\0';
int sent = 0;
while (!sent) {
sendto(sockfd, (const char *)buffer, strlen(buffer), MSG_CONFIRM, (const struct sockaddr *) &servaddr, sizeof(servaddr));
n = recvfrom(sockfd, (char *)buffer, BUFFER_SIZE, MSG_WAITALL, (struct sockaddr *) &servaddr, &len);
buffer[n] = '\0';
if (strcmp(buffer, "ACK") == 0) {
sent = 1;
}
}
}
close(sockfd);
return 0;
}
- 序列号实现
// 假设结构体包含序列号和数据
typedef struct {
int seq_num;
char data[BUFFER_SIZE];
} Packet;
// 发送端添加序列号
Packet send_packet;
send_packet.seq_num = sequence_number++;
strcpy(send_packet.data, "example data");
sendto(sockfd, (const char *)&send_packet, sizeof(Packet), MSG_CONFIRM, (const struct sockaddr *) &servaddr, sizeof(servaddr));
// 接收端按序列号处理
Packet received_packet;
recvfrom(sockfd, (char *)&received_packet, sizeof(Packet), MSG_WAITALL, (struct sockaddr *) &servaddr, &len);
// 存储到合适的数据结构并按序列号排序
- 使用 epoll 优化 I/O
#include <stdio.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>
#define PORT 8080
#define MAX_EVENTS 10
#define BUFFER_SIZE 1024
int main() {
int sockfd, epollfd;
struct sockaddr_in servaddr;
struct epoll_event ev, events[MAX_EVENTS];
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0) {
perror("socket creation failed");
exit(EXIT_FAILURE);
}
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(PORT);
servaddr.sin_addr.s_addr = INADDR_ANY;
if (bind(sockfd, (const struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
perror("bind failed");
close(sockfd);
exit(EXIT_FAILURE);
}
epollfd = epoll_create1(0);
if (epollfd == -1) {
perror("epoll_create1");
close(sockfd);
exit(EXIT_FAILURE);
}
ev.events = EPOLLIN;
ev.data.fd = sockfd;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, sockfd, &ev) == -1) {
perror("epoll_ctl: add");
close(sockfd);
close(epollfd);
exit(EXIT_FAILURE);
}
while (1) {
int nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);
for (int i = 0; i < nfds; ++i) {
if (events[i].data.fd == sockfd) {
char buffer[BUFFER_SIZE];
struct sockaddr_in cliaddr;
socklen_t len = sizeof(cliaddr);
int n = recvfrom(sockfd, (char *)buffer, BUFFER_SIZE, MSG_WAITALL, (struct sockaddr *) &cliaddr, &len);
buffer[n] = '\0';
printf("Received: %s\n", buffer);
}
}
}
close(sockfd);
close(epollfd);
return 0;
}