内存管理优化
- 避免频繁内存分配和释放:在服务器启动时预先分配一大块内存,使用内存池来管理。当处理请求需要内存时,从内存池获取,请求处理完毕后归还到内存池。
#include <stdio.h>
#include <stdlib.h>
#define MEM_POOL_SIZE 1024 * 1024 // 1MB内存池
#define CHUNK_SIZE 1024 // 每个内存块大小
typedef struct MemoryChunk {
struct MemoryChunk *next;
} MemoryChunk;
typedef struct MemoryPool {
MemoryChunk *freeList;
char pool[MEM_POOL_SIZE];
} MemoryPool;
MemoryPool* createMemoryPool() {
MemoryPool *pool = (MemoryPool*)malloc(sizeof(MemoryPool));
if (!pool) {
return NULL;
}
char *current = pool->pool;
pool->freeList = (MemoryChunk*)current;
for (int i = 0; i < MEM_POOL_SIZE / CHUNK_SIZE - 1; i++) {
((MemoryChunk*)current)->next = (MemoryChunk*)(current + CHUNK_SIZE);
current += CHUNK_SIZE;
}
((MemoryChunk*)current)->next = NULL;
return pool;
}
void* allocateFromPool(MemoryPool *pool) {
if (!pool->freeList) {
return NULL;
}
MemoryChunk *chunk = pool->freeList;
pool->freeList = chunk->next;
return chunk;
}
void freeToPool(MemoryPool *pool, void *chunk) {
((MemoryChunk*)chunk)->next = pool->freeList;
pool->freeList = (MemoryChunk*)chunk;
}
- 优化数据结构内存布局:对于频繁访问的数据结构,尽量使成员变量按照数据类型大小顺序排列,减少内存空洞,提高缓存命中率。例如,对于一个存储HTTP请求信息的结构体:
typedef struct HttpRequest {
int requestId; // 4字节
char method[8]; // 8字节
char url[256]; // 256字节
// 其他成员变量按顺序排列
} HttpRequest;
线程/进程模型优化
- 多线程模型:采用线程池技术,避免每次请求都创建和销毁线程的开销。
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define THREAD_POOL_SIZE 10
typedef struct Task {
void (*func)(void*);
void *arg;
struct Task *next;
} Task;
typedef struct ThreadPool {
pthread_t threads[THREAD_POOL_SIZE];
Task *taskQueue;
pthread_mutex_t queueMutex;
pthread_cond_t queueCond;
int stop;
} ThreadPool;
void* worker(void* arg) {
ThreadPool *pool = (ThreadPool*)arg;
while (1) {
pthread_mutex_lock(&pool->queueMutex);
while (!pool->taskQueue &&!pool->stop) {
pthread_cond_wait(&pool->queueCond, &pool->queueMutex);
}
if (pool->stop &&!pool->taskQueue) {
pthread_mutex_unlock(&pool->queueMutex);
pthread_exit(NULL);
}
Task *task = pool->taskQueue;
pool->taskQueue = task->next;
pthread_mutex_unlock(&pool->queueMutex);
task->func(task->arg);
free(task);
}
}
ThreadPool* createThreadPool() {
ThreadPool *pool = (ThreadPool*)malloc(sizeof(ThreadPool));
if (!pool) {
return NULL;
}
pool->taskQueue = NULL;
pool->stop = 0;
pthread_mutex_init(&pool->queueMutex, NULL);
pthread_cond_init(&pool->queueCond, NULL);
for (int i = 0; i < THREAD_POOL_SIZE; i++) {
pthread_create(&pool->threads[i], NULL, worker, pool);
}
return pool;
}
void addTask(ThreadPool *pool, void (*func)(void*), void *arg) {
Task *task = (Task*)malloc(sizeof(Task));
task->func = func;
task->arg = arg;
task->next = NULL;
pthread_mutex_lock(&pool->queueMutex);
if (!pool->taskQueue) {
pool->taskQueue = task;
} else {
Task *current = pool->taskQueue;
while (current->next) {
current = current->next;
}
current->next = task;
}
pthread_cond_signal(&pool->queueCond);
pthread_mutex_unlock(&pool->queueMutex);
}
void destroyThreadPool(ThreadPool *pool) {
pthread_mutex_lock(&pool->queueMutex);
pool->stop = 1;
pthread_cond_broadcast(&pool->queueCond);
pthread_mutex_unlock(&pool->queueMutex);
for (int i = 0; i < THREAD_POOL_SIZE; i++) {
pthread_join(pool->threads[i], NULL);
}
pthread_mutex_destroy(&pool->queueMutex);
pthread_cond_destroy(&pool->queueCond);
while (pool->taskQueue) {
Task *task = pool->taskQueue;
pool->taskQueue = task->next;
free(task);
}
free(pool);
}
- 多进程模型:可以使用fork创建子进程来处理请求,利用操作系统的进程调度机制。但进程间通信相对复杂,需要注意资源共享和同步问题。例如,使用共享内存和信号量来实现进程间通信和同步。
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <unistd.h>
#define SHM_SIZE 1024
int main() {
key_t key = ftok(".", 'a');
int shmid = shmget(key, SHM_SIZE, IPC_CREAT | 0666);
if (shmid == -1) {
perror("shmget");
return 1;
}
char *sharedMem = (char*)shmat(shmid, NULL, 0);
if (sharedMem == (void*)-1) {
perror("shmat");
return 1;
}
sem_t *semaphore = sem_open("/semaphore", O_CREAT, 0666, 1);
if (semaphore == SEM_FAILED) {
perror("sem_open");
return 1;
}
pid_t pid = fork();
if (pid == -1) {
perror("fork");
return 1;
} else if (pid == 0) { // 子进程
sem_wait(semaphore);
// 处理请求,修改共享内存
snprintf(sharedMem, SHM_SIZE, "Child process has written");
sem_post(semaphore);
shmdt(sharedMem);
sem_close(semaphore);
exit(0);
} else { // 父进程
sem_wait(semaphore);
// 处理请求,读取共享内存
printf("Parent read: %s\n", sharedMem);
sem_post(semaphore);
wait(NULL);
shmdt(sharedMem);
shmctl(shmid, IPC_RMID, NULL);
sem_close(semaphore);
sem_unlink("/semaphore");
}
return 0;
}
I/O多路复用优化
- 使用select:通过select函数可以同时监听多个文件描述符,当有事件发生时进行处理。
#include <sys/select.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define PORT 8080
#define BACKLOG 10
int main() {
int serverSocket = socket(AF_INET, SOCK_STREAM, 0);
if (serverSocket == -1) {
perror("socket");
return 1;
}
struct sockaddr_in serverAddr;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(PORT);
serverAddr.sin_addr.s_addr = INADDR_ANY;
if (bind(serverSocket, (struct sockaddr*)&serverAddr, sizeof(serverAddr)) == -1) {
perror("bind");
close(serverSocket);
return 1;
}
if (listen(serverSocket, BACKLOG) == -1) {
perror("listen");
close(serverSocket);
return 1;
}
fd_set readFds;
FD_ZERO(&readFds);
FD_SET(serverSocket, &readFds);
fd_set tmpFds = readFds;
while (1) {
int activity = select(serverSocket + 1, &tmpFds, NULL, NULL, NULL);
if (activity == -1) {
perror("select");
break;
} else if (activity > 0) {
if (FD_ISSET(serverSocket, &tmpFds)) {
int clientSocket = accept(serverSocket, NULL, NULL);
if (clientSocket != -1) {
FD_SET(clientSocket, &readFds);
}
}
for (int i = 0; i <= serverSocket; i++) {
if (FD_ISSET(i, &tmpFds) && i != serverSocket) {
char buffer[1024];
int bytesRead = recv(i, buffer, sizeof(buffer), 0);
if (bytesRead <= 0) {
close(i);
FD_CLR(i, &readFds);
} else {
// 处理HTTP请求
buffer[bytesRead] = '\0';
printf("Received: %s\n", buffer);
// 发送响应
const char *response = "HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\n\r\nHello, World!";
send(i, response, strlen(response), 0);
}
}
}
}
tmpFds = readFds;
}
close(serverSocket);
return 0;
}
- 使用epoll:在Linux系统下,epoll比select性能更优,尤其是在处理大量并发连接时。epoll采用事件驱动的方式,避免了每次调用都扫描所有文件描述符。
#include <sys/epoll.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define PORT 8080
#define BACKLOG 10
#define MAX_EVENTS 10
int main() {
int serverSocket = socket(AF_INET, SOCK_STREAM, 0);
if (serverSocket == -1) {
perror("socket");
return 1;
}
struct sockaddr_in serverAddr;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons(PORT);
serverAddr.sin_addr.s_addr = INADDR_ANY;
if (bind(serverSocket, (struct sockaddr*)&serverAddr, sizeof(serverAddr)) == -1) {
perror("bind");
close(serverSocket);
return 1;
}
if (listen(serverSocket, BACKLOG) == -1) {
perror("listen");
close(serverSocket);
return 1;
}
int epollFd = epoll_create1(0);
if (epollFd == -1) {
perror("epoll_create1");
close(serverSocket);
return 1;
}
struct epoll_event event;
event.data.fd = serverSocket;
event.events = EPOLLIN;
if (epoll_ctl(epollFd, EPOLL_CTL_ADD, serverSocket, &event) == -1) {
perror("epoll_ctl: serverSocket");
close(serverSocket);
close(epollFd);
return 1;
}
struct epoll_event events[MAX_EVENTS];
while (1) {
int numEvents = epoll_wait(epollFd, events, MAX_EVENTS, -1);
if (numEvents == -1) {
perror("epoll_wait");
break;
}
for (int i = 0; i < numEvents; i++) {
if (events[i].data.fd == serverSocket) {
int clientSocket = accept(serverSocket, NULL, NULL);
if (clientSocket == -1) {
perror("accept");
continue;
}
event.data.fd = clientSocket;
event.events = EPOLLIN | EPOLLET; // 边缘触发模式
if (epoll_ctl(epollFd, EPOLL_CTL_ADD, clientSocket, &event) == -1) {
perror("epoll_ctl: clientSocket");
close(clientSocket);
}
} else {
int clientSocket = events[i].data.fd;
char buffer[1024];
ssize_t bytesRead = recv(clientSocket, buffer, sizeof(buffer), 0);
if (bytesRead <= 0) {
if (bytesRead == 0) {
// 连接关闭
printf("Connection closed by peer\n");
} else {
perror("recv");
}
close(clientSocket);
epoll_ctl(epollFd, EPOLL_CTL_DEL, clientSocket, NULL);
} else {
buffer[bytesRead] = '\0';
printf("Received: %s\n", buffer);
const char *response = "HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\n\r\nHello, World!";
send(clientSocket, response, strlen(response), 0);
}
}
}
}
close(serverSocket);
close(epollFd);
return 0;
}